WORLD OCEAN CIRCULATION
USER CONSULTATION MEETING

21–22 February 2019 | ESA–ESRIN | Frascati (Rome), Italy

ESA UNCLASSIFIED - For Official Use
Internal waves, submesoscale eddies, and some of their interactions off the tropical West Atlantic

José da Silva (jdasilva@fc.up.pt), with contributions from: J.M. Magalhaes, M.C. Buijsman, G. Jeans, A.M. Santos-Ferreira
Surveyed features include:

- Internal Solitary Waves (multiple modes)
- Transcritical Internal Solitary Waves
- Internal Solitary Waves over the shelf
- Fronts
- Instabilities

150 images:
- Envisat-ASAR
- TerraSAR-X
- Sentinel-1
- Sentinel-2
- Sentinel-3
- MODIS
- MERIS
Interactions with Ocean Circulation

MODIS-Terra 2017 Sep. 7

Aviso DUACS Velocity (m/s)

Interactions with Ocean Circulation
Internal Wave Impacts on Offshore Industry

Internal Waves

λ

D C

h_1

h_2

η_0

c_0

Orbital velocities classified as currents in metocean

Soliton

h_1

h_2

$-\eta_0$

c

L
Quantification of Soliton Velocities

Simple Two Layer Theory

\[u_1 = \frac{c \eta}{(h_1 + \eta)} \]
Estimating Internal Wave Amplitude

Vertical displacements at the sea surface owing to ISWs

\[\frac{|\eta|}{h} \approx \frac{g'H^2}{gh} \Rightarrow |\eta| = O(0.1) \text{m} \]

hydrostatic limit, (Stokes, 1847)

\[Z = \eta(x,t) \]

\[Z = -H + h(x,t) \]

\[h \approx -100 \text{m} \]

\[\approx 10 \text{ km in the South China Sea} \]

Horizontal velocity, \(u \) (m/s)

Internal wave surface displacement (meters)
Sentinel 3 Along Track SAR Altimeter Validated in This Region
Estimating Internal Wave Currents

![Internal Wave Amplitude](image1)

![Internal Wave Surface Currents](image2)
Future Validation Required

Brandt et al. (2002)
Recommendations

• Internal wave crest feature recognition products for various satellite platforms

• Validation and refinement of methods to quantify internal wave amplitude

• Improved simple relationships to estimate the velocity profile

• New atlas of internal wave characteristics with velocity profiles